Articulatory motivated acoustic features for speech recognition
نویسندگان
چکیده
In this paper, we consider the use of multiple acoustic features of the speech signal for continuous speech recognition. A novel articulatory motivated acoustic feature is introduced, namely the spectrum derivative feature. The new feature is tested in combination with the standard Mel Frequency Cepstral Coefficients (MFCC) and the voicedness features. Linear Discriminant Analysis is applied to find the optimal combination of different acoustic features. Experiments have been performed on small and large vocabulary tasks. Significant improvements in word error rate have been obtained by combining the MFCC feature with the articulatory motivated voicedness and spectrum derivative features: improvements of up to 25% on the small-vocabulary task and improvements of up to 4% on the large-vocabulary task relative to using MFCC alone with the same overall number of parameters in the system.
منابع مشابه
Acoustic feature combination for speech recognition
In this thesis, the use of multiple acoustic features of the speech signal is considered for speech recognition. The goals of this thesis are twofold: on the one hand, new acoustic features are developed, on the other hand, feature combination methods are investigated in order to find an effective integration of the newly developed features into state-of-the-art speech recognition systems. The ...
متن کاملUsing multiple acoustic feature sets for speech recognition
In this paper, the use of multiple acoustic feature sets for speech recognition is investigated. The combination of both auditory as well as articulatory motivated features is considered. In addition to a voicing feature, we introduce a recently developed articulatory motivated feature, the spectrum derivative feature. Features are combined both directly using linear discriminant analysis (LDA)...
متن کاملArticulatory Manner Features Recognition with Linear and Polynomial Kernels
A typical speech recognition system uses acoustic features to represent speech for its processing. Recently, articulatory features were introduced to serve the same purpose. They are motivated by linguistic knowledge and may therefore provide better or complementary representation of speech signal. We present research on recognition of such articulatory features by Support Vector Machines with ...
متن کاملA New Bidirectional Neural Network Model for the Acoustic- Articulatory Inversion Mapping For Speech Recognition
In this paper, a new bidirectional neural network for better acoustic-articulatory inversion mapping is proposed. The model is motivated by the parallel structure of human brain, processing information by having forward-inverse connections. In other words, there would be a feedback from articulatory system to the acoustic signals emitted from that organ. Inspired by this mechanism, a new bidire...
متن کاملCombining acoustic and articulatory feature information for robust speech recognition
The idea of using articulatory representations for automatic speech recognition (ASR) continues to attract much attention in the speech community. Representations which are grouped under the label ‘‘articulatory’’ include articulatory parameters derived by means of acoustic-articulatory transformations (inverse filtering), direct physical measurements or classification scores for pseudo-articul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005